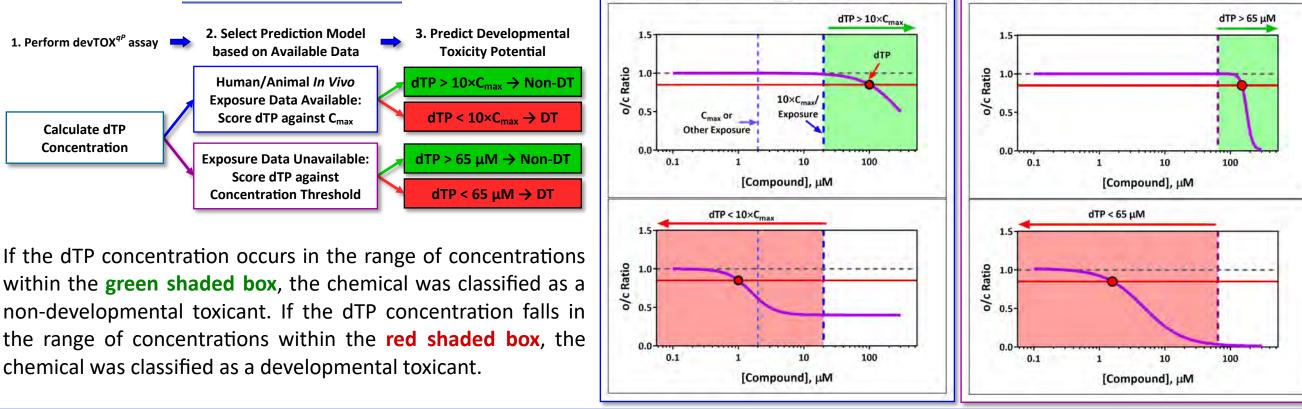
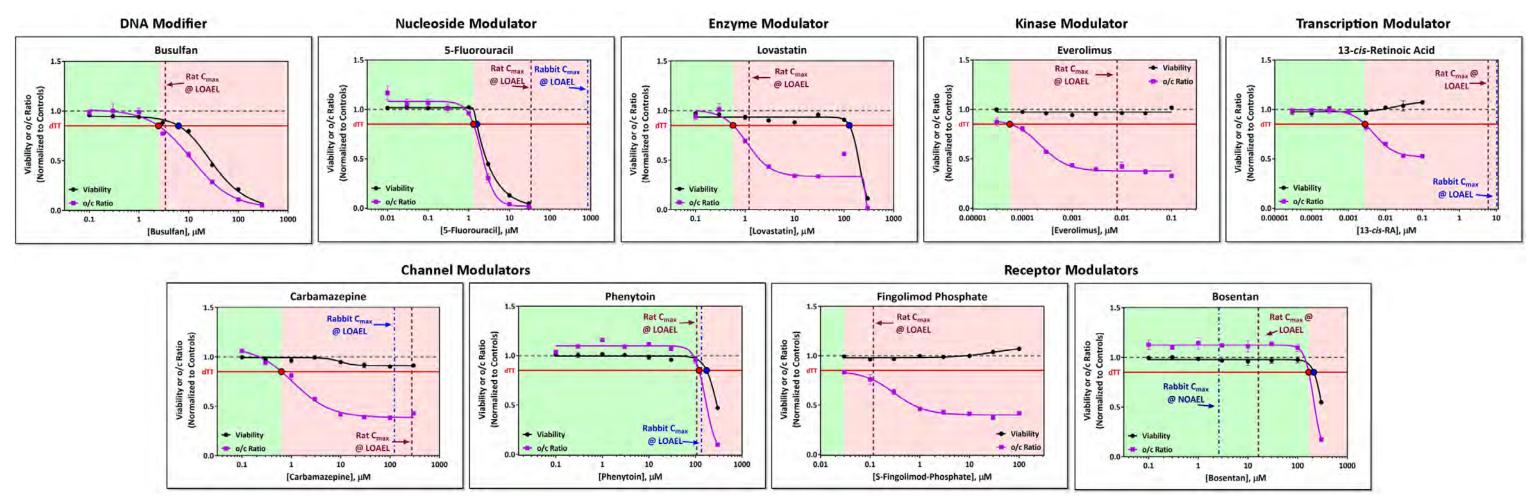

Defining the Reproducibility and Applicability Domain of devTOX quickPredict, a Human **Pluripotent Stem Cell-Based Developmental Toxicity Assay** J.A. Palmer, A.M. Smith, M.R. Colwell, E.L.R. Donley, R.E. Burrier Stemina Biomarker Discovery, Madison, WI, United States



ABSTRACT

- Assessing the accuracy, reproducibility, and applicability domain of new approach methods (NAMs) is necessary step for establishing confidence in these methods and enabling their use in a regulatory setting.
- Over 100 chemicals have been evaluated with the devTOX quickPredict (devTOX^{qP}) assay, which predicts the developmental toxicity potential of a chemical based on changes in human iPS cell metabolism. The assay predicted the developmental toxicity potential across this diverse set of chemicals with 87% accuracy (88% sensitivity, 86% specificity). Within individual chemical use classes (i.e., pharmaceuticals or pesticides), assay accuracy ranged from 81% to 94%, demonstrating the broad applicability of the assay.
- To further define the assay's applicability domain, the results were separated into different pharmacological categories and performance was assessed. The assay's sensitivity in these pharmacological categories ranged from 50% to 100% and provides insight into the assay's biological applicability domain.
- The reproducibility of the predictive model was evaluated using independent replicates of three chemical treatments (carbamazepine, n=45; thalidomide, n=17) conducted by multiple scientists with multiple iPS cell lines, freeze lots and reagents over the course of 5 years. The interpolated developmental toxicity potential (dTP) values (determined using the devTOX^{qP} predictive model) were within two standard deviations of the mean for each of the chemicals, demonstrating that the assay endpoints are reproducible over time.
- These data demonstrate the importance of understanding a NAM's biological system, its strengths, and its limitations. Taken together, these data demonstrate the accuracy, reproducibility, and broad applicability domain of the devTOX^{*qP*} assay and support its use as an alternative to animal models for developmental toxicity testing.

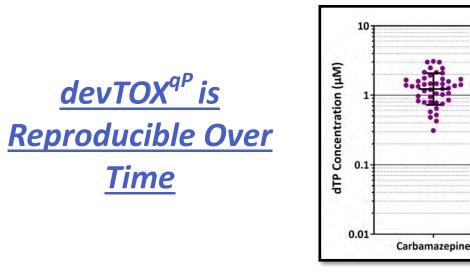
		METHO	DDS		
e 2000 2000 2000 2000	Orn		Prediction Models	Predictive Model with C _{max} or +/- Exposure Data	Predictive Model with No Exposure Data


- Human induced pluripotent stem (iPS) cells (HYR0103 or DYR0100; ATCC) were maintained in the undifferentiated state in mTeSR1 (StemCell Technologies) on Matrigel (Corning).
- Cells were plated in 96-well plates and exposed to 8 concentrations of each test article for 48 hours. Media ± test article were replaced approximately every 24 hours.
- Spent media from the last 24-hour treatment period was collected and cell viability was assessed using the CellTiter-Fluor Cell Viability Assay (Promega).
- Media samples were analyzed with UPLC-ESI-TOF-MS to determine ornithine (ORN) and cystine (CYSS) levels.
- ORN and CYSS were normalized to spiked-in internal standards (ISTD) and the median response of the reference treatment samples (0.1% DMSO). The o/c ratio was calculated by dividing the reference-normalized value of ORN by the reference-normalized value of CYSS
- Non-linear dose-response curves for the o/c ratio, ornithine and cystine response and cell viability were fit with GraphPad Prism (GraphPad Software).
- The developmental toxicity potential (dTP, o/c ratio) and toxicity potential (TP, cell viability) concentrations were predicted from the respective dose-response curves using the developmental toxicity threshold (dTT).

RESULTS

devTOX^{9P} Accurately Predicts Developmental Toxicity Potential Across a Wide Range of Chemotypes

Balanced Accuracy	Sensitivity	Specificity	PPV	NPV
87%	88%	86%	88%	86%


Example devTOX^{*qP*}**Results for Developmental Toxicants**

Developmental Toxicants (N=66)				Non-Developmental Toxicants (N=58)				
Compound	devTOX ^{<i>qP</i>}	Compound	Compound devTOX ^{qP} Compound devTOX ^{qP} Compound		devTOX ^{qP}			
13- <i>cis</i> -Retinoic Acid ^A	DT	HEPP ^B	NON	Abacavir ^B	NON	Loratadine ^A	NON	
5-Fluorouracil ^A	DT	Hexaconazole ^C	DT	Acebutolol ^A	NON	Methanol ^B	NON	
9- <i>cis</i> -Retinoic Acid ^A	DT	Hydroxyurea ^B	DT	Acetaminophen ^A	NON	Metoclopramide ^A	NON	
Abacavir ^B	DT	Ketoconazole ^A	DT	Acetylcysteine ^A	NON	МЕНР ^в	NON	
Acetazolamide ^B	NON	Lapatinib ^B	DT	Acycloguanosine ^A	NON	Nilotinib ^B	NON	
Acitretin ^A	DT	Lenalidomide ^B	DT	all- <i>trans</i> -Retinoic Acid ^B	DT	Novaluron ^c	NON	
all-trans-Retinoic Acid ^B	DT	Lovastatin ^B	DT	Amoxicillin ^A	NON	o-Phenylphenol ^c	NON	
Aminopterin ^A	DT	Methanol ^B	DT	Ascorbic Acid ^A	NON	Oseltamivir ^B	NON	
Artesunate ^{B,D}	NON	Methotrexate ^A	DT	Butylparaben ^B	NON	Penicillin G ^A	NON	
Atrazine ^C	DT	Methoxyacetic Acid ^B	DT	Caffeine ^B	NON	Propylene Glycol ^B	DT	
Bortezomib ^A	DT	Methylmercury ^B	DT	Camphor ^C	NON	Pyriproxyfen ^c	NON	
Bosentan ^B	NON	MEHP ^B	DT	Clopyralid ^C	NON	Ramelteon ^B	NON	
Busulfan ^A	DT	Myclobutanil ^c	DT	Dabigatran Etexilate ^B	NON	Resveratrol ^c	NON	
Carbamazepine ^A	DT	Nilotinib ^B	DT	Desloratadine ^B	NON	Retinol ^A	NON	
Chlorophacinone ^C	DT	o,p'-DDT ^c	DT	Dibutylamine ^C	DT	Saccharin ^B	NON	
Cyproconazole ^C	NON	Ochratoxin A ^c	DT	Dimethyl Phthalate ^C	NON	Sitagliptin ^A	NON	
Cytarabine ^A	DT	Phenytoin ⁴	DT	Dimethylamine ^C	NON	Sorbitol ^A	NON	
Dabigatran Etexilate	DT	Pomalidomide ^B	DT	Diphenhydramine ^A	NON	Sotalol ^A	NON	
Diniconazole ^C	DT	Propiconazole ^c	DT	Doxylamine ^A	NON	Sucrose ^C	NON	
Dinoseb ^C	NON	Pyridaben ^c	DT	Ethylene Glycol ^B	NON	Tapentadol ^B	NON	
Diquat Dibromide ^C	DT	Ramelteon ^B	DT	Fipronil ^C	DT	Tegaserod ^A	NON	
Doxorubicin ^A	DT	Rotenone ^c	DT	Folic Acid ^A	NON	Tetrabromobisphenol A ^c	NON	
D-Penicillamine ^A	DT	Salicylic Acid ^B	DT	Glycerol ^c	NON	Thiamine ^A	NON	
Endosulfan ^c	DT	Spiroxamine ^c	DT	Glycolic Acid ^B	NON	Triclopyr ^c	NON	
Epoxiconazole ^C	DT	Thalidomide ^A	DT	Hexazinone ^C	NON	Triethylene Glycol ^c	NON	
Ethylene Glycol ^B	DT	Thiacloprid ^c	NON	Imazamox ^c	NON	Triticonazole ^c	DT	
Etretinate ^A	DT	ThioTEPA ^A	DT	lmazapyr ^c	NON	Zalepion ^B	NON	
Everolimus ^A	DT	Thiram ^c	DT	Isoniazid ^A	DT	Zidovudine ^B	DT	
Fingolimod ^{B,D}	DT	Topiramate ^B	DT	Levothyroxine ^A	NON	Zoxamide ^c	DT	
Fluazinam ^c	DT	Triadimefon ^c	DT	Notes: HEPP: D,L-3-h	wdrovy_3_othul_2 r	henylpropionamide; MEHP:	Mono(2_oth	
Flusilazole ^C	DT	TTNPB ^C	DT			eutic C _{max} ; B : Scored against D		
Genistein ^C	DT	Valproic Acid ^B	DT			ainst concentration threshold; D		
Glycolic Acid ^B	DT	Warfarin ^A	NON			ydroartemisinin; Fingolimod: Fi		

Use/Industry	# DT	# Non-DT	Balanced Accuracy	Sensitivity	Specificity	Pharmacological Classification	# DT	# Non-DT	Accuracy	Sensitivity	Specificity
Pharmaceuticals/Vitamins	39	26	90%	87%	92%	Channel Modulators	3	1	100%	100%	100%
Agrochemicals	21	11	80%	86%	73% DNA Modifiers		2	0	100%	100%	N/A
Industrial Solvents/	6	10	90%	100%	80%	Enzyme Modulators	7	6	85%	86%	83%
Additives/Byproducts						Kinase Modulator	4	0	100%	100%	N/A
Personal Care Products Food Additives/Contaminants	3	8	94% 94%	100% 100%	88% 89%	Nucleoside Modulator/ Central Metabolite Inhibitor	6	0	83%	83%	N/A
						Receptor Modulator	4	10	75%	50%	100%
 65 pharmaceuticals pharmacological m 				their		Second Messenger Modulator	0	1	100%	N/A	100%
 Accuracy, sensitivity, and specificity of the devTOX^{qP} assay 					say	Transcription Modulator	6	1	100%	100%	100%
was determined for	r each o	class.			-	Other	7	7	86%	71%	100%

- Pharmaceuticals with varying mechanisms of action are accurately predicted with the devTOX^{*qP*} assay, with enzyme
- Sensitivity was \geq 80% for all pharmacological classes except for Receptor Modulators. In many cases, the ability of the assay to accurately predict a developmentally toxic chemical is related to whether or not iPS cells express target (receptor, channel, enzyme) of interest. For example:
 - Fingolimod Phosphate (active metabolite of Fingolimod), a sphingosine 1-phosphate receptor inhibitor, decreases the o/c ratio at biologically relevant concentrations. Human iPS cell gene expression data indicate that the cells express S1PR3.
 - ◆ In contrast, the concentration where an effect is observed for Bosentan, an endothelin receptor antagonist, is >10× greater than the *in vivo* exposures. Human iPS cell gene expression data indicate low/variable expression of EDNRA and EDNRB.

Average dTP Concentrations								
	Carbamazepine	Methotrexate	Thalidomide					
dTP Mean (±SD), [μM]	1.39 (±0.7)	0.06 (±0.02)	0.14 (±0.07)					
dTP Range [µM]	0.31-2.77	0.03-0.12	0.05-0.26					

dTP results from 45 separate experiments between 2014 and 2021 showed good reproducibility across multiple reagent lots and scientists. Over 99% (106/107) of the dTP values were within were within two standard deviations of the mean. On the graph, points are the individual dTP concentrations from each experiment, with a line at the mean with the standard deviation.

Personal Care Products	3	8	94%	100%	88%
Food Additives/Contaminants	3	9	94%	100%	89%

CONCLUSIONS

- devTOX^{qP} predicted the developmental toxicity of <u>115 different chemicals</u> with 87% balanced accuracy (88% sensitivity, 86% specificity).
- devTOX^{qP} identifies the developmental toxicity potential for a wide range of mechanisms, but may not be applicable in all cases (i.e., targets not expressed in human iPS cells). Note: this is based on classification by pharmacological mechanism. The mechanism of action for developmental toxicity may be different.
- devTOX^{*qP*} results were reproducible across multiple reagent lots and technicians.
- Future Studies: Test all drugs included in the ICH S5(R3) Reference Compound List and Incorporate in vitro to in vivo extrapolation (IVIVE).

References:

[1] Daston GP, et al. Birth Defects Res B Dev Reprod Toxicol. 2014; 101(6):423-8. doi: 10.1002/bdrb.21132; [2] Guenther MG, et al. Cell Stem Cell. 2010; 7(2):249-257. doi: 10.1016/j.stem.2010.06.015; [3] Exposure data from Daston et al., 2014, ICH S5(R3), or FDA Pharmacology Review for that drug. References available upon request.