Prediction of Cardiotoxicity Potential using Targeted Metabolomics and Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes <u>J. Palmer¹</u>, A. Smith¹, B. Smart¹, M. Colwell¹, M. Ludwig¹, V. Gryshkova², J.P. Valentin², E. Donley¹, F. Kirchner¹, R. Burrier¹ ¹Stemina Biomarker Discovery, Madison, WI, United States; ²UCB Biopharma SPRL, Braine L'Alleud, Belgium

ABSTRACT

- Cardiac safety is one of the leading causes of late-stage compound attrition in the pharmaceutical industry and accounts for 28% of the safety related withdrawals of FDA-approved drugs from the market.¹
- Current cardiac safety preclinical evaluations are heavily focused on electrophysiological assessment and fail to evaluate cardiomyopathy and other forms of structural cardiotoxicity.
- **Metabolic perturbations** are one of the primary mechanisms underlying the cardiotoxicity elicited by pharmaceuticals.
- We have developed a biomarker-based assay for evaluating the cardiotoxicity potential of compounds based on changes in the metabolism and viability of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM).
- Assay development and testing was conducted in two phases: (1) biomarker identification and (2) targeted assay development/biomarker confirmation.
 - In the first phase, hiPSC-CM were exposed to 57 compounds (37 cardiotoxic, 20 Non) and the spent media was analyzed using untargeted UPLC-HRMS-based metabolomics. The cardiotoxic compounds were broken into three categories, structural, functional, and compounds that cause both types of cardiotoxicity. Analysis of metabolomics data identified a set of biomarkers that represent different metabolic pathways.
 - In phase two, a rapid, targeted UPLC-HRMS method was developed for the five most predictive biomarkers. A composite model was developed that discriminates cardiotoxic from non-cardiotoxic compounds based on changes in hiPSC-CM metabolism of five metabolites and cell viability.
- The predictive model classified 78 compounds with known cardiotoxicity outcomes (49 cardiotoxic, 29 non-cardiotoxic) with 86% accuracy, 92% sensitivity, and 79% specificity based on the response observed at 10-times the therapeutic Cmax. The model correctly classified 100% of the functional cardiotoxicants, 79% of the structural cardiotoxicants, and 95% of the compounds known to cause both functional and structural cardiotoxicity.
- This new hiPSC-CM-based assay provides a paradigm that can identify both structural and functional cardiotoxic compounds that could be used in conjunction with CiPA and other endpoints to provide a more comprehensive evaluation of a compound's cardiotoxicity potential.

RESULTS

BIOMARKER IDENTIFICATION

Identify Biomarkers that Respond in the Absence of Cytotoxicity & Screening Exposure Level Selection

Goal: Identify non-cytotoxic exposure levels that change iPSC-CM metabolism

- . Model feature response . Calculate MAVE
- 8. Response at C_{max} and MAVE
- 4. Review top 4 responding features
- . Select Exposure

MAVE: Maximum Acceptable Viability Exposure (highest exposure tested with $\geq 90\%$ viability)

Exposure Selection Information						
Treatment	Verapamil					
Effect	Functional					
C _{max} Total (μM)	0.815					
C _{max} Free	0.07					
MAVE (μM)	3					
Selected Exposure (µM)	0.815					

Exposure Levels Selected for Single Exposure Phase

	Treatment	Drug Class or Use	MAVE (μM)	Selected Exposure (µM)		Treatment	Drug Class or Use	MAVE (µM)	Selected Exposure (µM)
	Amiodarone	Antiarrhythmic	3	3		Dofetilide	Antiorrhythmic	100	0.031
	Amitriptyline	Antidoprocent	1	1		Encainide	Antiarrnythmic	100	7.1
	Nortriptyline	Antidepressant	1	1	cts	Astemizole	Antibistansina	3	0.03
("	Amphotericin B	Antifungal	3	3	Effe	Terfenadine	Antinistamine	3	3
era	Chloroquine	Antimalarial	3	3	nal	Nifedipine	Antibupartansiva	100	0.58
Gen	Arsenic Trioxide		10	10	nctic	Verapamil	Antinypertensive	3	0.815
ts ("	Bortezomib		0.1	0.1	Fur	Sertindole	Antinguchatic	0.3	0.3
ffec	Dasatinib		10	0.72		Thioridazine	Antipsychotic	1	1
alE	Fluorouracil		100	46		Cisapride	Prokinetic	100	1.8
tion	Lapatinib	Antinoonlastic	10	4.18		Leucine	Amino Acid	100	100
nnc	Mitoxantrone	Antineopiastic	1	1		Hexylresorcinol	nol Anthelmintic	30	1
S S	Paclitaxel		0.03	10		Thiabendazole		100	30.8
ura	Sorafenib		3	3		Amoxicillin	Antibiotic	100	17
iruct	Sunitinib		1	1		Methapyrilene	Antihistaming	100	15.3
Ś	Vandetanib		1	1		Ranitidine	Antinistanine	100	1.7
	Anagrelide	Antiplatelet	30	0.6		Erlotinib	Antineoplastic	3	3
	Clozapine	Antipsychotic	10	9.5	0	Acyclovir	Antiviral	100	6.7
	Isoproterenol	Bronchodilator	100	0.1	toxi	Natamycin	Eard Additive/Antifungal	30	0.8
	Tegaserod	5HT Receptor Agonist	3	0.08	dio	Phenylphenol	FOOU AUUITIVE/AITITUTIga	100	0.09
	Dexfenfluramine	Anorectic	30	4	-Cai	Citric Acid		100	100
S	Dithiazanine lodide	Anthelmintic	0.1	0.1	Non	Propyl Gallate	Food Additive/Antioxidant	30	3
fect	Pergolide	Antidyskinetic	30	0.03		Tartaric Acid		100	1.2
al Ef	Daunorubicin		0.1	0.1		Maltol	Food Additive/Flavor Agent	100	30
ctur	Doxorubicin	Antinoonlastic	0.1	0.1		Benzoic Acid	Eard Additive / Preservative	100	36
Strue	Idarubicin	Antineopiastic	0.1	0.1		Methylparaben	FUUU AUUILIVE/FIESEIVALIVE	100	0.23
0,	Imatinib		3			Sorbitol	Eard Additive /Sweetener	100	3.9
	Rofecoxib	Νςλιρ	100	17		Aspartame	FUUU AUUILIVE/SWEELEITEI	100	1
	Valdecoxib		100	5.1		Ascorbic Acid	Vitamin	100	36
						Biotin	Vitaliiii	100	0.03

BIOMARKER REPRODUCIBILITY

Combinations of Reproducible Biomarkers Lead to Predictive Models of Cardiotoxicity

- Refined biomarker profile and evaluated reproducibility using non-cytotoxic single exposure levels.
- Generated multiple models using combinations of individual metabolites, metabolite ratios, and cell viability.
- Metabolic signatures of cardiotoxicity were evaluated in an independent test set of 12 compounds to verify model reproducibility and accuracy prior to moving forward with targeted assay development.

Training Set Results											
Prediction Model	Accuracy	Sensitivity	Specificity	PPV	NPV	AUC					
Global Tox 1	0.89	0.89	0.90	0.94	0.82	0.89					
Global Tox 2	0.96	0.97	0.95	0.97	0.95	0.95					
Global Tox 3	0.86	0.81	0.95	0.97	0.73	0.86					
Global Tox 4	0.88	0.89	0.85	0.92	0.81	0.88					
Global Tox 5	0.91	0.92	0.90	0.94	0.86	0.91					
Functional ¹	0.95	0.89	0.96	0.89	0.97	0.91					

<u>Test Set Results</u>										
Prediction Model	Accuracy ²	Sensitivity	Specificity	PPV	NPV					
Global Tox 1	0.92	0.83	1.00	1.00	0.86					
Global Tox 2	0.92	1.00	0.83	0.86	1.00					
Global Tox 3	0.92	0.83	1.00	1.00	0.86					
Global Tox 4	0.92	0.83	1.00	1.00	0.86					
Global Tox 5	0.83	0.83	0.83	0.83	0.83					
Functional ¹	1.00	1.00	1.00	1.00	1.00					

Sensitivity = detection of cardiotoxic compounds: Specificity = detection of non-cardiotoxic compounds: PPV = Positive Predictive Value, percent of compounds predicted to be cardiotoxic that are true cardiotoxicants; **NPV** = Negative Predictive Value, percent of compounds predicted to be non-cardiotoxic that are true non-cardiotoxic compounds. **AUC** = Area Under the Curve.

¹Predictions are for positive = subclass, negative = all other compounds, does not include compounds classified as "general". ²Model Accuracy Based on Correct Classification at <10fold of the Therapeutic Total C_{max}.

Cardio quickPredict: Targeted Biomarker Assay Development

Combination of Three Metabolite Ratios Predicts Cardiotoxicity Potential with 86% Accuracy

- Cardiotoxic compounds can be separated from non-cardiotoxic compounds using the reference control-normalized (foldchange) values for metabolite combinations at 10 \times therapeutic total C_{max}.
- The Prediction Model is a composite of 3 ratios (5 metabolites and cell viability) that maximize assay sensitivity.

Individual Ratio and Prediction Model Results

Ratio	Balanced Accuracy	Sensitivity	Specificity	PPV	NPV	Functional*	Structural*	"General"*
Viability / Lactate	0.84	0.78	0.90	0.93	0.70	0.93	0.57	0.80
Thymidine / Arachidonic Acid	0.76	0.59	0.93	0.94	0.57	0.53	0.50	0.70
N-Acetylaspartate / 2'-Deoxycytidine	0.81	0.71	0.90	0.92	0.65	0.87	0.57	0.70
Composite Model	0.86	0.92	0.79	0.88	0.85	1.00	0.79	0.95

*Fraction of Subclass Correctly Predicted at Cardiotoxic

Sunitinik

Vandetanib

"General"		Functional Effe	ects	Structural Effect	cts	Non-Cardiotoxicants			
Treatment	Cardio ^{qP} Prediction	Treatment	Cardio ^{qP} Prediction	Treatment	TreatmentCardioPrediction		Cardio ^{qP} Prediction	Treatment	Cardio ^{qP} Prediction
Amiodarone	Тохіс	Astemizole	Тохіс	Busulfan	Toxic	Acetylsalicylic Acid	Non	Leucine	Non
Amitriptyline	Тохіс	Bepridil	Тохіс	Daunorubicin	Toxic	Acyclovir	Тохіс	Loratadine	Non
Amphotericin B	Тохіс	Chlorpromazine	Тохіс	Dexfenfluramine	Non	Adipic acid	Non	Maltol	Non
Amsacrine	Тохіс	Cisapride	Тохіс	Dithiazanine lodide	Toxic	Amoxicillin	Non	Methylparaben	Non
Anagrelide	Non	Dofetilide	Тохіс	Doxorubicin	Тохіс	Ascorbic Acid	Non	Natamycin	Non
Arsenic Trioxide	Тохіс	Encainide	Тохіс	Idarubicin	Тохіс	Aspartame	Non	Phenylphenol	Non
Bortezomib	Тохіс	Levomethadyl Acetate	Тохіс	Imatinib	Тохіс	Axitinib	Non	Praziquantel	Тохіс
Chloroquine	Тохіс	Nifedipine	Тохіс	Nandrolone Decanoate	Тохіс	Benzoic Acid	Non	Ranitidine	Non
Clozapine	Тохіс	Ondansetron	Тохіс	Pergolide	Non	Biotin	Non	Sildenafil	Non
Dasatinib	Тохіс	Quinidine	Тохіс	Rofecoxib	Toxic	Cetirizine	Non	Sucrose	Non
Fluorouracil	Тохіс	Sertindole	Тохіс	Rosiglitazone	Тохіс	Cimetidine	Non	Tartaric Acid	Non
Isoproterenol	Тохіс	Sotalol	Тохіс	Tegaserod	Тохіс	Citric Acid	Non	Thiabendazole	Тохіс
Lapatinib	Тохіс	Terfenadine	Тохіс	Valdecoxib	Non	Erlotinib	Тохіс	Tolbutamide	Toxic
Mitoxantrone	Тохіс	Thioridazine	Тохіс	Zidovudine	Тохіс	Gemfibrozil	Тохіс	Xylitol	Non
Nilotinib	Тохіс	Verapamil	Тохіс			Hexylresorcinol	Non		
Nortriptyline	Тохіс				•				
Paclitaxel	Toxic								

Ratio Concentration-Response Curves Vary between Types and Mechanisms of Cardiotoxicity

Reference control-normalized (fold-change) values for metabolite ratios for a subset of the tested compounds with varying effects on the metabolite ratios included in the Prediction Model. Solid red lines indicate the ratio-specific prediction threshold (level of change required for a compound to be considered cardiotoxic).

CONCLUSIONS

- The combination of 3 ratios predicted the cardiotoxicity potential of 78 compounds with 86% accuracy (92% sensitivity, 79% specificity).
- The Prediction Model is optimized for sensitivity over specificity to minimize the number of false negatives incurred.
- Exposure to cardiotoxic compounds with varying mechanisms of toxicity alters human iPSC-derived cardiomyocyte metabolism
- Metabolites selected for the final model exhibited a reproducible response indicative of cardiotoxicity in three independent experiments
- This method can be combined with other assays or endpoints for a comprehensive understanding of a compound's cardiotoxicity liability.
- Future Directions:
- Incorporate data from additional endpoints and/or assays, such as non-cardiomyocyte cell viability and electrophysiological endpoints to determine if cytotoxicity is cardiomyocyte specific and add additional mechanistic information.

Research reported in this presentation was supported by the National Institute Of General Medical Sciences of the National Institutes of Health under Award Number R44GM100640. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.